7 research outputs found

    ΠšΠΎΠΌΠΏΠ΅Π½ΡΠ°Ρ†ΠΈΡ ошибок оцСнивания мСстополоТСния, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… тропосфСрным распространСниСм Ρ€Π°Π΄ΠΈΠΎΠ²ΠΎΠ»Π½, Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠ·ΠΎΠ½Π½Ρ‹Ρ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ»Π°Ρ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСмах

    Get PDF
    Introduction. Wide area multilateration (WAM) systems are the main competitors of secondary surveillance radar (SSR) systems used in air traffic control (ATC). The general principle of WAM operation is based on the assessment of pseudoranges between a signal source (an aircraft airborne transponder) and the ground receivers with precisely known geographical coordinates deployed over the ATC area. The aircraft position is estimated by measuring pseudoranges. A significant factor affecting the accuracy of aircraft positioning is tropospheric refraction, a phenomenon caused by the inhomogeneity of the earth's atmosphere and manifested in a deviation in the direction of the rays along which the signal of an aircraft transponder propagates. Refraction increases the lengths of ray paths, thus increasing the corresponding pseudoranges. As a result, the estimate of the aircraft position receives an additional bias. Altitude estimates produce unreasonably large errors.Aim. To develop a mathematical model for the signals received by a WAM system, which accounts for tropospheric wave propagation, as well as to derive an algorithm for aircraft positioning with compensated tropospheric errors.Materials and methods. Equations for the pseudorange estimation errors caused by wave propagation in a spherically stratified atmosphere were derived using the method of geometrical optics.Results. This paper proposed a mathematical model for pseudorange estimates in WAM systems, which accounts for the bias associated with the phenomenon of tropospheric refraction. An analysis of the proposed model showed that pseudorange errors depend linearly on the distance between the aircraft transponder and the receiver. This conclusion allowed an algorithm for aircraft positioning with compensated tropospheric errors to be developed. The proposed algorithm yields an unbiased estimate of the aircraft position. The standard deviation of altitude estimates increases by 60%, although remaining within the limits permissible for WAM systems.Conclusions. The developed mathematical model of WAM signals, which considers tropospheric propagation errors in pseudorange estimation, as well as the algorithm for aircraft positioning with compensated tropospheric errors, can be used in the development of spatially distributed navigation systems.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π¨ΠΈΡ€ΠΎΠΊΠΎΠ·ΠΎΠ½Π½Ρ‹Π΅ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ»Π°Ρ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ (Wide Area Multilateration, WAM) ΡΠ²Π»ΡΡŽΡ‚ΡΡ основным ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚ΠΎΠΌ комплСксов Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ систСм управлСния Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ Ρ€Π°Π±ΠΎΡ‚Ρ‹ WAM-систСм Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ сигнала Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Ρ‡ΠΈΠΊΠ° Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ судна систСмой разнСсСнных Π² пространствС ΠΏΡ€ΠΈΠ΅ΠΌΠ½Ρ‹Ρ… станций ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΡ†Π΅Π½ΠΊΠ΅ мСстополоТСния. Одним ΠΈΠ· сущСствСнных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ мСстополоТСния Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ судна (Π’Π‘), являСтся тропосфСрная рСфракция. РСфракция ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½Ρ‹ оптичСского ΠΏΡƒΡ‚ΠΈ сигнала, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ измСряСмых ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ. БлСдствиСм этого являСтся появлСниС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ смСщСния Ρƒ ΠΎΡ†Π΅Π½ΠΎΠΊ мСстополоТСния Π’Π‘. ΠŸΡ€ΠΈ этом нСдопустимо большиС значСния смСщСния ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ высоты.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ сигналов ΠΏΡ€ΠΈΠ΅ΠΌΠ½Ρ‹Ρ… станций WAM-систСмы, которая ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ особСнности тропосфСрного распространСния Ρ€Π°Π΄ΠΈΠΎΠ²ΠΎΠ»Π½, ΠΈ синтСз Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ мСстополоТСния Π’Π‘ с компСнсациСй тропосфСрных ошибок ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π½ΠΈΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ гСомСтричСской ΠΎΠΏΡ‚ΠΈΠΊΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ уравнСния, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ошибки измСрСния ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Ρ„Ρ€Π°ΠΊΡ†ΠΈΠ΅ΠΉ Π² сфСричСски слоистой тропосфСрС.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° матСматичСская модСль формирования ΠΎΡ†Π΅Π½ΠΎΠΊ ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°Ρ Ρ‚Ρ€ΠΎΠΏΠΎΡΡ„Π΅Ρ€Π½ΡƒΡŽ Ρ€Π΅Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ. Анализ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ошибки измСрСния ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ зависят ΠΎΡ‚ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‡ΠΈΠΊΠΎΠΌ Π’Π‘ ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ½Ρ‹ΠΌ ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠΌ. Π­Ρ‚ΠΎΡ‚ Π²Ρ‹Π²ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ оцСнивания мСстополоТСния Π’Π‘ с компСнсациСй тропосфСрных ошибок. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ позволяСт ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ смСщСния Ρƒ ΠΎΡ†Π΅Π½ΠΎΠΊ мСстополоТСния Π’Π‘ ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ БКО ΠΎΡ†Π΅Π½ΠΊΠΈ высоты Π½Π° 60 % ΠΈ сохранСнии этого ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² допустимых для WAM-систСм ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ….Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ матСматичСская модСль сигналов WAM-систСмы, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°Ρ ошибки тропосфСрного распространСния Ρ€Π°Π΄ΠΈΠΎΠ²ΠΎΠ»Π½ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ ΠΏΡΠ΅Π²Π΄ΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ оцСнивания мСстополоТСния Π’Π‘ с компСнсациСй тропосфСрных ошибок ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСм

    Quantum Jordanian twist

    Full text link
    The quantum deformation of the Jordanian twist F_qJ for the standard quantum Borel algebra U_q(B) is constructed. It gives the family U_qJ(B) of quantum algebras depending on parameters x and h. In a generic point these algebras represent the hybrid (standard-nonstandard) quantization. The quantum Jordanian twist can be applied to the standard quantization of any Kac-Moody algebra. The corresponding classical r-matrix is a linear combination of the Drinfeld- Jimbo and the Jordanian ones. The obtained two-parametric families of Hopf algebras are smooth and for the limit values of the parameters the standard and nonstandard quantizations are recovered. The twisting element F_qJ also has the correlated limits, in particular when q tends to unity it acquires the canonical form of the Jordanian twist. To illustrate the properties of the quantum Jordanian twist we construct the hybrid quantizations for U(sl(2)) and for the corresponding affine algebra U(hat(sl(2))). The universal quantum R-matrix and its defining representation are presented.Comment: 12 pages, Late

    Compensation of Positioning Errors Caused by Tropospheric Wave Propagation in Wide-Area Multilateration Systems

    Get PDF
    Introduction. Wide area multilateration (WAM) systems are the main competitors of secondary surveillance radar (SSR) systems used in air traffic control (ATC). The general principle of WAM operation is based on the assessment of pseudoranges between a signal source (an aircraft airborne transponder) and the ground receivers with precisely known geographical coordinates deployed over the ATC area. The aircraft position is estimated by measuring pseudoranges. A significant factor affecting the accuracy of aircraft positioning is tropospheric refraction, a phenomenon caused by the inhomogeneity of the earth's atmosphere and manifested in a deviation in the direction of the rays along which the signal of an aircraft transponder propagates. Refraction increases the lengths of ray paths, thus increasing the corresponding pseudoranges. As a result, the estimate of the aircraft position receives an additional bias. Altitude estimates produce unreasonably large errors.Aim. To develop a mathematical model for the signals received by a WAM system, which accounts for tropospheric wave propagation, as well as to derive an algorithm for aircraft positioning with compensated tropospheric errors.Materials and methods. Equations for the pseudorange estimation errors caused by wave propagation in a spherically stratified atmosphere were derived using the method of geometrical optics.Results. This paper proposed a mathematical model for pseudorange estimates in WAM systems, which accounts for the bias associated with the phenomenon of tropospheric refraction. An analysis of the proposed model showed that pseudorange errors depend linearly on the distance between the aircraft transponder and the receiver. This conclusion allowed an algorithm for aircraft positioning with compensated tropospheric errors to be developed. The proposed algorithm yields an unbiased estimate of the aircraft position. The standard deviation of altitude estimates increases by 60%, although remaining within the limits permissible for WAM systems.Conclusions. The developed mathematical model of WAM signals, which considers tropospheric propagation errors in pseudorange estimation, as well as the algorithm for aircraft positioning with compensated tropospheric errors, can be used in the development of spatially distributed navigation systems

    Momentary radical removal of lymphangioma in children. The results of prospective cohort study in parallel groups

    Get PDF
    Lymphangioma is a benign neoplasm caused by a congenital malformation of the lymphatic vessels.Purpose. To study the possibility of momentary radical removal of lymphangioma in children based on a prospective cohort study in parallel groups.Characteristics of children and research methods. The article presents the results of treatment of 152 patients with lymphangioma, reported from the Department of Vascular Surgery of the Children’s Republican Clinical Hospital of Tatarstan. All patients were divided into 3 groups according to the applied method of treatment. The patients in Group 1 (n=95) underwent radical removal of lymphangioma, patients in Group 2 and Group 3 underwent partial removal followed by sclerotherapy of the residual cavity of the lymphangioma.Results. The authors observed relapse in 17 (11.2%) cases, 11 of these cases were observed after previous operation of complete excision (Group 1). According to the study of the distribution of relapses, there was no difference between the groups.Conclusion. Momentary radical excision of lymphangioma is implementable in 63.3% of cases. If it is impossible to remove lymphangioma completely they use partial excision and sclerotherapy of the residual cavity. The probability of relapse does not increase in case of impossibility to remove lymphangioma completely. Minimal invasive procedure is a priority of modern surgery, as it reduces surgical trauma, facilitates postoperative period and improves cosmetic result
    corecore